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FAR-FIELD FEATURES OF THE KELVIN WAKE

A. bIaul and F. Nibleom

David W. Taylor Naval Sbip Research and1l*evlopm t Center
110helda, Marylood 29Md

ABSTRACT from the ship. Often accompanying these dark regions, at

The classical Kelvin wake trailing a ship advancing a slightly larger angle, are bright line%, which show up
at constant speed in calm water is studied. In particular, especially well on X-band SAR images". The apparent
asymptotic expressions for determining the far.field wake, included angle of-this narrow wake is much smaller that
at large distances behind the ship, are investigated
numerically. This analysis, in which surface tension and that corresponding to the Kelvin cusp line.
nonlinearities are ignored, indicates that the divergent Several theoretical explanations of the features
waves of a surface ship generally are infinitely steep at the
track of the ship,,even though their amplitude vanishes observed in SAR images of ship wakes have been
there; this result is theoreticallypossible because the proposed 13,4,5,61. The proposed explanations include
wavelength of the divergent waves vanishes at the track of
the ship. Inasmuch as infinitely-steep water waves cannot interactions between the cross currents cteated by a ship in
exist in reality, the linear no-surface-tension analysis its wake and surface gravity waves 13,6) and the occurence
presented in this study suggests that no divergent wave%
can exist within a certain region.in the vicinity of the of a sharp peak in the amplitude of the divergent waves
track of the ship, and that the Kelvin wake contains three in the Kelvin wake for a ship form having a large flare
distinct regions: (i) an inner region where only transverse
waves can exist, (il) an outer region where both transverse angle (5]. However, there currently appears to be no
and divergent waveg are present, and (iii) an intermediate convincing electrodynamic or hydrodynamic explanation of
region at the boundary between the inner and outer
regions where short steep divergent waves, as well as the observations. It thus seems necessary to investigate in
transverse waves, can be found. Numerical results for a detail each one of the proposed possible explanations in
simple bow form show that the inner region is quite
narrow, and that the wavelength of the divergent waves at order to determine whether one, or possibly a combination
the boundary of the inner region is of the order of I to of several, of them does in fact provide a satisfactory
20 cm, depending on the speed of the ship. These results
appAr to be consistent with the narrow V-wakes observed theoretical interpretation of the SAR images of ship
in some SAR images of ship wakes. The analysis wakes.
presented in this study may thus provide a partial
explanation for these observations. However, the small' The clasical Kelvin wake trailing a ship advancing-
wavelengths mentioned above indicate that the divergent at constant speed in calm water is examined in this study.
waves in the vicinity of the track of the ship are likely to
be significantly altered by surface tension, which should 'Viscosity, surface .tension and nonlinearities are ignored in
!herefore be included in a more realistic analysis, this preliminary analysis, and irrotational flow is assumed.

Theanalysis and related numerical results for a simple
INTRODUCTION ship bow form have led to several conclusions and

It has been observed, e.g. 11,2,31, that images of recommendations for further studies which are presented
ship wakes taken by the SEASAT SAR (Synthetic at the end of the paper, Only two conclusions that may

Aperture Radar) and other airborne SAR systems be related to some of the features observed in SAR
sometimes reveal long, narrow wakes extending back images of ship wakes are discussed here.
several miles behind ships. According to Swanson [31, It was previously found by Scragg (51 that, for a

"there appears a narrow, dark band along the centerline ship bow form with a large flare angle, the zeroth-order
of the ship wake, widening slightly with distance away slender-ship approximation to the far-field wave-amplitude
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function given in Noblesse 7 predicts a sharp peak in the of the ship than the line ilong which the steepness of the

value of the amplitude of the divergent wives at an angle divergent waves exhibits a peak. Figures 21 and 22 show

from the track of the ship equal to approximately half the considerable variations among the several "steep-divergent-

bow entrance angle. This grding of Scrangg has been waves" lines that are represented in these figures.

verified in this study, as may be seen from figures 15, 16 Nevertheless, these lines ay be seen to correspond to

and 18. Furthermore, the magnitude of the wave- values of Y/(-X) equal to about 10-2 to 2.10-2. For
amplitude peak has been found to increase very rapidly as ship speeds varying between 10 knots and 25 knots, the

the Froude number decreases below a certain threshold wavelength of the divergent waves corresponding to the

value. This peak thus appears to be a large-flare low- foregoing values of Y/(- X) may be shown to vary

Froude-number feature. For the simple ship bow form between 0.7 cm and 4.2 cm for Y/(-X) = 10-2, and

considered in this study, the peak in the amplitude of the 2.7 cm and 17 cm for Y/(- X) = 2.10-2. These

divergent waves in the Kelvin wake occurs along a line at wavelengths are consistent with the wavelengths of the

6' from the track of the ship. It may be found from radar pulses used in SAR imaging, so that the foregoing

equation (30a) that the wavelength of the divergent waves results may provide a partial hydrodynamic explanation

along this line varies between 0.7 m and 4.5 m for a ship for the narrow V-wakes observed in these images.

with speed varying between 10 knots and 25 knots, The tentative nature of this explanation must

respectively, however be stressed. Indeed, the foregoing results are

The other conclusion of this study that may be based on an analysis in which surface tension and

related to the narow -V-wakes observed in some SAR nonlinearities have been neglected. Inasmuch as this linear

images of ship wakes is the result that the divergent waves no-surface-tension analysis predicts extremely short and

of a surface, N1p are infinitely steep at the track of the steep waves in the~vicinity of the track of the ship, it is

ship, even though their amplitude vanishes there. This evident that both surface tension and nonlinear effects are

result is theoretically possible because the wavelength of liable to be significant. In particular, the short

the divergent waves vanishes at the track of the ship. A wavelengths found along the steep-divergent-wave lines

similar result was previously obtained by Sharma [8) who determined in this study, and the brief description of the

found that the Michell thin-ship approximation for a thin effects of surface tension upon the Kelvin wake given in

and deep strut-like ship form predicted infinite slopes for Sharma [8), Lamb [9, pp. 468-470) and Wehausen and

the divergent waves at the track of the ship. Inasmuch as Laitone [10, pp. 636-637) indicate that the system of

infinitely-steep water waves cannot exist in reality, the divergent waves in the vicinity of the track of the ship is

foregoing result suggests that no divergent waves can exist likely to be profoundly affected by surface tension.

within a certain region in the vicinity of the track of the Effects of surface tension upon the Kelvin wake will be

sh'p, and that the Kelvin wake contains three distinct investigated in a sequel to the present study.

regions: (i) an inner region where only transverse waves

can exist, (ii) an outer region where both transverse and APPROACH

divergent waves are present, and (iii) an intermediate This study considers the steady potential flow due

region at the boundary between the inner and outer to a ship advancing with constant speed in calm water of

regions where short steep divergent waves, as well as infinite depth and lateral extent. The far-field Kelvin

transverse waves, can be found, wake, which is of primary interest here, may be

Numerical results for a simple bow form show that conveniently analyzed in terms of the nondimensional far-

the "no-divergent-wave" inner region is quite narrow, as field coordinates r = Xg/U 2, velocity potential + = 0g/U 3

may be seen from figure 20 showing the Kelvin cusp line and velocity vector Vx+ = VxO/U, where g is the

(angle C 19128'), the line along which the amplitude of gravitational acceleration and U is the speed of advance of

the diverget waves exhibits a peak (angle v 60), and the the ship, X and 0 represent the dimensional coordinates

three lines along which the steepness of the divergent and velocity potential, respectively, and Vx and Vx are the

waves is equal to 1/20, 1/15 and 1/7 (chain line close to nondimensional and dimensional differential operators

the track of the ship). The latter three lines, along which Vx = (a/ax,O/ay,a/az) and VX = (a/8X,a/aY,a/aZ).

the divergent waves are steep, lie much closer to the track The mean free surface is taken as the plane z = 0, with

2



the z axis pointing upwards, and the x axis is chosen in gradient, and the free-surface slopes in the Kelvin wake
the ship centerplane and pointing towards the bow. The are readily apparent and should be noted here. A first
origin of the system of coordinates is placed within the numerial difficulty. stems from the oscillatibns of the
ship. The Froude number is denoted by F = U/(gL) t 2, exponential functiontE± given by equation (7), which arc
where L is the lengthof the ship, very rapid for large values of lxi. We have x = Xg/U 2

Equation (32) in [7) yields the following expressioh (X/L)/E, For a typical value of the Froude number
for the velocity potential associated with the Kelvin wake equal to 0.2, say, we thus have x = 25 X/L; we then
behind the ship have x = -250 at 10 ship lengths behind the ship, and

[0 +_ Kmuch larger values of lxi must be considered at greater
( =mJ0 [E+(tx)+E(t;)(t) d, (I) distances behind the ship or/and for smaller values of the

where E,(ti7 is the exponential function Froude number. Even for the comparatively-moderate
(tx) = exp[z(l +t2) + i(x±ytXI +t 2)1/ 21, (2) value of x equal to -50, figure 1 shows that the

and K(t) is the far-field wave-amplitude function, which functions E+ and E_ oscillate quite rapidly. More
depends on'the hull shape and the Froude number, precisely, figure 1 depicts the real parts of the functions
Assuming that differentiation under the integral sign is E+(t;x,a) and E (t;x,a) for x = -50; a = .1, .2,
permitted in equation (I), we may obtain 1/23/2, .4 and .5; and for 0 4 t 4 7 and 0 4 t 4 3 on

_+j=i if- IE++E_ (I+ t2)1/2 d.(3a) the left and right sides, respectively. Figure I also
+ E E+-E K It(I +t 2)1 / 2  1 (3b) indicates that the behavior of the function E+(t;x,a)

The nondimensional elevation e =Eg/U2 of the strongly depends on the-value of a.
free surface at a sufficiently-large distance behind the ship, -0 ( -- o) E_

such that nonlinearities may be neglected, is given by

e(x,y) = a(x,y,0)/ax. (4) s-
The slopes of the free surface in the directions parallel- ,g 1 "' I
and perpendicular to the ship course then are /WI
Oe(x,y)/x = 82+(X,y,O)/3x2  (4a) I'

OC(X,y)/ay = 2+(k'y,0)/aXay. (4b) V

If differentiation under the integral sign in equation.(3a) is 1 -1

permitted, we have [)!,/III~~
I mfo E+ Kt I {+t Idt (5a)I

1+\,y1 0 E +-E_ I I W +2) ',b,

The vertical velocity ,z is given by - ....

4 4 =  -X .X' ¢ (6 ) 0 t T O I -

In this study, we are mostly interested in the value Fig. I - Real Parts of the Functions E+(t;x,a) and

of the several flow variables defined above at the mean E(t;x,a) for x = -50 and a = .1, 2, 1/23/2, .4 and .5

free surface and behind the ship, so that we have z = 0
and x < 0. Expression (2) for the exponential function E. A second, more basic, difficulty is associated with

then becomes the differentiation under the integral sign which was used

E = exp[ix(I Ta t)(I +t2)t/2, (7) for obtaining expressions (3a,b) and (5a,b) from

where a is defined as expression (1). For a fully-submerged body, the far-field

a = -y/x. (8) wave-amplitude function K(t) is exponentially-small as t

For a ship with port- and starboard-symmetry, as is -, so that the operation of differentiating under the

considered here, the Kelvin wake is symmetric about the integral sign in expression (1) can te continued ,--finitely

ship track y = 0. We may then restrict the analysis of the in principle. Differentiation under the integral sign ikewise

Kelvin wake to the domain y > 0 and x < 0, and assume is justified if z < 0. However, the operation mubt be

a >' 0. justified in the limiting case z = 0 for a surface ship.

Two difficulties associated with the foregoing Clearly, the operation may not be justified in principle, or

approach for numerically determining the potential, its feasible in practice, if the far-field wave-amplitude

3



function KC(t) does not vanish sufficiently rapidly as t -. 9(t;) and 01(t;?) are depicted in figures 3a, b, c,

-. Precise information about the asymptotic behavior of respectively.
the function K(t) as t - - is required in this respect.

Fiure 2 depicts the real and imaginary parts of the -1 -% A- JaMu.As

functions (I + t2)K(t) and t(l + t2)K(t) appearing in the 7
integrands 9f the integrals (5a) and (5b), resperlively, for w..

0 4 t 4 16 and for asimple ship-bow shape which is a-
considered further on in this study. Differentiation under

the integral sign in expression (3a) is clearly not justified Js6
in 'the case corresponding to figure 2........

04

+1 ~Fig. 3a - The Phase Function 8(t;&) for 0 4 t 4 6 and

I+I

Fig. 2 - Real and Imaginary Parts of the Functions t
(I + t2)K(t) and t(l +t2)K(t) for a Simple Ship Bow Shape ..

in the Zeroth-Order Slender-Ship Approximation - .. 2

-a - lvi .3

ASYMPTOTIC EVALUATION OF THE = .. a'.s.
KELVIN WAKEa 4 S S

For large values of jxi and z = 0, analytical 1-t
approximations to the integrals (1), (3a,b) and (5ab) can Fig. 3b - The Function 8'(t;&) for 0 4 t 4 6 and
be obtained by taking advantage of the rapid oscillations Several Values of a

of the exponential functions E ± defined by equation (7). a-

These functions may be expressed in the form

E =explixOQA), (9) ~
where 0(t~a) is defined as $-z. -

90M 0-a)0+6/.- .2

The functions E+Qt;x,a) and E_(;,a), whr a .0

correspond to the function E(t;x,a) with a > 0 and a < 0,
respectively. In the limiting case a= 0, we have E, %

explix(l + t2)1"2 1 = E, The derivatives of the phase-
function O(t;x,a) with respect to t are given by
8'(t;a) =-(a-t+2t

2)/(+t 2)1 /2,(Ia
e"(t;a) (l-3at-2at 3)/(+t 2)3 /2, (lib) 023

0 'Q;a) = -3(a+tO/(l+t 2)5 /2. (11c) Fig. 3c - The Function O"(t;a) for 0 4 t 4 3 and
The phase 6(t;a) and its first ,%nd second derivatives Several Values of a

4



It may be seen from figure 3b that the first In the neighborhood of the point to, where O = 0, we
derivative 0' does not vanish except if 0 4 a 4 1/23/2,, hkvC
for which 9' vanishe for 2 values oft. Equation (I a) o'(t;a) t- O + (t-t ± O,1'/2, (16)

shows that the 2 points w - e0 " o, that is where the where the function to(e) is defined by equation (13), and

phase 0 is stationary, are given by O9 and e0 " represent the values of the functions 8'(t;e)
t (e ) ( [±(1 -S2 ) t/2 I /4 . . ( 12 ) a n d " ( t .; ) d e fim ed b y e q u a tio n s ( Il a ) a n d ( t i c ) fo r t =

We have 0 < t- 4 t+ 4 -, with t = 0 and t 4 = for to(q). The functions to(e),-t+() and t(r), O (u) and
0, and t - -1/21/2 = t+ for , = 1/23/2 The 2 e "(e), e o ) and e (.), e ..(e) and e '"(.) are depicted

points of stationary phase t andt+ are apparent on the in figure 5. The signs of the functions Q1, e-, e-and
left side of figure 1 for a .1, .2 and 1/23/2. Figure 3c e" .are readily apparent from this figure. The Taylor.

shows that the second derivative 0" vanishes for one series approximation (14) and (16) are useful for devising
value of t, say to, if a P 0. Equation ( lib) yields r.i efficient numerical method for evaluating the integrals

to() = (r- I/r)/21/2  (13) (1), (3a,b) and (Sa,b), as will be examined in detail
where r is defined.as elsewhere.

r = {[1+(1+2a2)1/2j/21/2a)t/3 (13a)

The value t for which 8'= 0, and for which 0' reaches
its maximum as figure 3b indicates, is a decreasing

function of a. We have to = for a =0, to = 1/21/2

for a = 1/23/2, and t. = 0 for a = . Furthermore,

figure 4, where the functiong to(a), t_(a) and t+(*) are

depicted, shows that we have 0 .t _ 4 to  4 t+ for

0 a • 1/23/2

t .- 
1 2 

- A

t2-

0 0.1 0.2 0.3 0.4 0.5

Fig. 4'- The Functions to(a), t+(a) and t =(a) 1a

I n t h e v ic i n it y o f t h e p o i n t s o f s t a t io n a r y p h a s e t ± 0 - .0 .5

the first derivative of the phase-function may be Fig. 5 - The Functions t0(a), t :(a), 06(a), 06"(a),
approximated by the two.term Taylor series e" (a) and 0e' (a) for 0 4 a 4 '1.5

O'(t;a) V (t-tt)eo + (t-tt 201'/2, 
(14)

where the function t +(a) is defined by equation (12), and Asymptotic approximations valid for z = 0 and x

0'. and 0 " represent the values of the functions 0"(t;a) - - ® will now be obtained for the integrals (1), (3a,b)
and 0"'(t;a) for t = t +(o). By using equation (12) in and (5a,b). These five integrals may be expressed in the

equations (I lb) and (1 Ic) we may obtain form
01= .;t231 2 a(l -8a 2)' 2 /[1+4a 2 ±(l-8a2 )1 /2 ]1/2, (15a) n+k(x,a) = Im(ck Wk+c'Wp), (17)

0e" =:-2296o4/[ 1 +4o 2 +(l-8a)2 ] . ( 15b) where 0 < k 4 4, c are constants, and ,:t are the
9/26 + 4 2 (1-82)1/2)3/2.
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haqas dMined O± - (t,;&), ':t - 9"(t,;*), (25cd)
p (,.) . fo,0 eVJ~e',(t;tX)JK(t)6k(t) dr; (18) and t± is the function of a given by equation (12), that is

in this expresson, te phase O±(t;.) is defined by we have

O!±(t;@) = (i:;t)1XI +t2)11 2 with aO (19) t± = (1 +(I-gV2)/2j/40. (26)
hanDy, the contants C: in equation (17) and the We may then obtain

functions ak(t in emtion (18) are defined ir'the 1+t± 2 = l+4a2±(t-g&2)1/2I/g&2. (26b)

following table: The expressions for the terms a: may readily be obtained
from equations (20a-e), (25b) and (26a,b). Equations (25c),

t #k ak C c (19) and (26,b) yield
0 + 1 1 1 (20a) , = (3(l-&.2)t/21(l+4.tv-(S 8.2)/21/2/21/2 6c. (2)
I +' (I +t2)112 i i (20b) Finally, 0; is given by equation (15a), that is we have
2 +y t(l+t2)1/2 i -i (20c) :O = 2.(1/2 l- 2)t/2/[I+4¢*2+(-k 2)/ 2j' 2. (26d)

3 4,Y 1 +t2  1 - 1 (20e) It may be shown from equations (26a,c,d) and

4 /txy t(l +t2) -1 1 ( verified from figures 4, 3a, 3c and 5 that we have t_ - 0
In the particular case, = 0, that is on the track of and 0_ = I = e" in the limit a = 0. Furthermore,

the ship, equation (18) yields Wk - - = Wk', with equations (25b) and (20&-e) show that we have a" = I fot

Wk(XO) = fOe° exp[ix( +t2)1/21 K(t)ak(t) dt. k = 0, 1 and 3, and aC = 0,(or Jk - 2 and 4 in the limit
The major contribution to this integral in the limit x a = 0. The asymptotic approximation (23) for +k(x,&)

-T stems from the point of stationary phase at the origin therefore becomes identical to the asymptotic

t=0. Specifically, we may obtain approximation given by equations (21), (21a,b,c) and

(W/2)1/2(-x)"2+k(x,0) v' (22a,b) for +k(x,0) in the limit a = 0, if the contribution

Im ckKO exp[i(x-n/4)] as x (21) of the second point of stationary phase t+ = 00 is null,

with co  1, c, = i, c3 = - 1, (21a,b,) that is if A+ = 0 for a = 0 andt+ = . In other words,
ad c2  0 -- c4; we thus have the asymptotic approximation (23) for +k(Xa) is uniformly
y 0 - for = 0, (22a,b) valid in the vicinity of the track of the ship a = 0 if A+

in accordance with the symmetry of the wave pattern 0 fork = 0. Equations (26a) and (26d) yield t+ 1/2.

about the axis a = 0. In equation (21), K 0 represents the a for a 2 0. We ten have t + t 1

value of the function K(t) at the origin t = 0, that is we
as a - 0, and the condition for the asymptotic

have K 0 -- K(0). approximation for Xk(xO) to be uniformly valid in the

For 0 < . < 1,23/2, the phase O+(t;,) is stationary, limit a = 0 takes the form

that is 81. = 0, at the two distinct points t_(a) and t+(a) tl/ 2K(t)ak(t) -. 0 as t - -' (27)

defined by equation (12), whereas 8:"(t;.) > 0 for t 0 0, In the limit , = 1/23/2, we have = 1/21/2
as may be seen from figure 3b. Equations (17) and (18) t, and 0; = 0, as" may be verified from equations

then yield (26a,d) and figure 5. Equation (24a) then shows that

NXk(xI) "' Im ck+W" as x -. -o with 0 < a < 1/23/2. have IA I I as a - 1/23/2; and the asymptotic

The contribution of the two points of stationary phase t± approximation (23) is not valid in the vicinity of the

can be evaluated by using the method of stationary phase, boundary of the Kelvin wake. A complementary

with the result asymptotic approximation, expressed in terms of Airy

(n1/2)1/2(-X)1/2 a) +0 0 lm Ck(A-E +A+E+) functions, valid at and near the Kelvin cusp line is given
as x "" -o, with 0 < a < 1/23/2 and (23) in Ursell [Il] for the particular case of a pressure point at

CO = 1, c1 = i = c2, C3 = - 1 = C4; (23a,b,c,d,e) the free surface. However, we are mostly interested in the

furthermore, A and E± are the amplitude and sector 0 4 a < 1/23/2, that is inside the Kelvin wake, in
exponential functions defined as the present study.

A Ka/(: O )t 2 , (24a) The far-field asymptotic approximation (23) shows

E± expli(xO± ±n/4)J, (24b) that the wave pattern at any point (x,a), with x << - I
where K+, , e+ and 0; are defined as and 0 ( a < 1/23/2, consists in two elementary plane

±= K(t), = ak(t±), (25a,b) progress:,e waves. Specifically, equations (4), (20b), (23)
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and (24b) show that the free-urface ekvatioz within the

Kelvin wake at a sufficiently-large distance behind the ship &_Jaw

is given by
(x12)trk-x)I/2e(x,*,) - Re[Aiexp(ip.)+Aeql+] "()

where the phases V, of the two waves are givenby

+ =xO ±w/4. Curves along which the phases V + or 
9p_ are constant then are defined by the equation -S/u)uk'(1IsI)

e: ±w/4 = constant. This relation and equation (8) then

yield the following parametric equations for the curves

along which the phase is equal to -2nn:

•x = (2nnw±/4)/6±, (29a)-a 0.1 U. 0.3 112102

yj = (2nn ± n/4)&/8 ±, (29b)

where 0 4 a 4 1/23/2. The ten constant-phase cuives Fig. 7 - The Wavelengths A.(a) and Propagation Angles

corresponding to 1 4 n 4 10 are depicted in figure 6. The P±(a) of the Transverse and Divergent Waves in the

"transverse" and "divergent" waves in this classical Kelvin Wake

representation of the Kelvin wake correspond to the Waves Equation (28) shows that the amplitudes of the

A' iaexp(i a xp(ip+), respectively, in equation transverse and divergent waves in the Kelvin wake are

(28). asymptotically given by (2/n)112 A:t I/(-x) 1/ 2 as x

The steepnesses, say s±, of these waves then are given by

i± = (2/n)tl 2IA± I/(- x)1/ 2 : ±- Equations (24a), (25a,b)

and, (20b) then yield

(-x)/ 2s± ru a±(a)IK(t±) as x -0-, (32)

where o(*) is defined as (2/)1/2(1+t2 )1/
2/( :O)1/21[.

Equations (26b,d) and (30a) then yield

Fig. 6 - The Classical Kelvin Ship Wave Pattern 0 + 3;(l -8a 2) 1 2] -.4.2±(1 -82)I/2
[I + 4a2 (1 -8a2)/2

13/4/

The wavenumber corresponding to the wave with 64n(21/2n) 1/2a7/2(l - 82)1/4. (33)

phase p . is given by Vp ±. The corresponding Equations (12) and (33) yield t_- 0 and o =

wavelength, say At, and direction of propagation with 1/n(2n,)1/2 in-the limit a = 0, for which we have l-_ = 2.

respect to the track of the ship, sny P., then are given by and p - 0 as was noted previously. The steepness of the

A,± = 2n/JVopj and P,, = tan- 1(q/qt), where 9± and transverse wave at a point (x,0) on the track of the ship

cP : represent the x- and y-derivatives of 9 ± and IVc ± I then is given by

- [((Op)+ (po)2 t11 2 x The relation rp L x±+/4 and s_(x,O) IK(0)1/in(2n)l 2(-X) /2 as x -* (34)

equation (26c) then yield Equations (l2) and (33) also yield t+ - 1/2* and

A± = 21/216na2/[3 :(1-8a) ] [l4.±(l-2)1/2, (30S) o+', 1/16R3/2a7/ 2 in the limit a - 0, for which we have

P ± = siff{ l-4 2 (l-&a21 2)1/[l+4a 2±(l-8a2)"/21 1/ 2. (301) A+-+ 0 and P+- n/2. We thus have o+,- t7 2/n(2n)1/ 2 as

Equations (30a,b) show that we have l,_ = 2n_-p = a - 0, and equation (33) shows that the steepness of the

and X+ = 0, P4 = n/2 in the limit a = 0, and A_ divergent wave at a point (x,a) in the vicinity of the track

4n/3 = A +, P _ = sin-(1/31/ 2) = P + for a = 1/23/2. of the ship is given by

More precisely, we have s+(x,a) "- t721K(t+)I/n(2t) 1/2(-X) 1/ 2

2n 4n/3 ) A.+ > 0 and (31a) as a - 0, with t+ 'V 1/2.. (35)

0( ,P_ ( sin-1(l/3 / 2) 4 p +4  n/2, (31b) The steepness s+(x,a) then becomes unbounded as

as may be seen from figure 7 where the functions a - 0 if

A±(a)/2n and 2fi,(a)/n are depicted. t712IK(t) - 0 as t - 0. (36)
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Equations (4), (20b) and (27) show that the asymptotic *(Iy4((1 p+ a0-)

expansion (23) for the free-surface elevation is valid in the P 0

vicinity of the track of the ship if

t312K(t) - 0 as t "" (37)

Let us assume that we have _

IK(t)I ,,l/t, as t -- (38) N',

Both conditions (37) and (36) are then satisfied if

3/ 2 < 1A< 7/2. (39) /
Condition (37) means that the amplitudes of the /

divergent waves in the Kelvin wake vanish as a -- 0, that PC

is as the track of the ship is approached, whereas // -/I~ -Y W / r,
condition (36) means that the waves become infinitely -.. - d - 0.1

steep; this is theoretically possible because the wavelengths Fig. 8 - Waterlines and Framelines of the Simple Ship
of the divergent waves vanish as a -. 0, as is indicated in Bow Form Considered for Numerical Applications

equation (31a) and figure 7. However, infinitely-steep A SIMPLE'TEST CASE:

water waves cannot exist in reality; indeed, there exists a THE FAR-FIELD WAVE-AMPLITUDE FUNCTION

theoretical upper bound for the steepness-of water waves The foregoing theoretical results are investigated

in deep water which is approximately equal to 1/7. numerically-for the simple semi.infinite ship form studied

Condition (39) therefore suggests that noe ivergent waves previously by Scragg [S]. This ship form consists of a bow

can exist within a certain domain in the vicinity of the region, with length L, followed by a parallel body, with

track of the ship, and that the Kelvin wake contains three invariant framelines, extending to infinity downstream. All

distinct regions: (i) an inner region adjacent to the track framelines, both in th:-bow region and downstream from

of the ship where only transverse waves can exist as.was it, are trapezoidal in shape with constant draft D. The

just noted, (ii) an outer region where both transverse and waterlines are rectilinear. More precisely, the hull form is

divergent waves are jOresent, and (iii) a region at the defined by the equations

boundary between the inner and outer regions where short y = ± (tani + z tany)(l - x)

steep divergent waves, as well as transverse waves, can be for 0 4 x 4 I and 0 > z > -d, (40a)

found. It must be kept in mind, however, that these y = ± (tanpi+ z tany) for x 4 0 and 0 > z > -d, (40b)

conclusions regarding the Kelvin wake are based on where x,y,7vand d are nondimensional in terms of the

condition (39), which was obtained on the basis of an length of the bow region, that is we have"R'' L and

analysis in which surface-tension and nonlinearities are d = D/L. Equations (40a,b) require that the condition

ignored. Inasmuch as this linear no-surface-tension tan? > d tany (41)

analysis predicts short steep waves, both surface-tension be satisfied. Equation (40a) shows that the entrance angle

and nonlinear effects are liable to be significant, and these at the bow (x = 1, z = 0) is equal to 2fl, and it may be

effects should therefore be included in a more realistic seen from equations (40a,b) that y. represents the flare

analysis. In particular, it is evident from Lamb [9, angle for x 4 0. The four wAierlines corresponding to

pp. 468-4701 and Wehausen and Laitone 10, pp. 636-6371 % = 0, -d/3, -2d/3, -d and the five framelines

that the system of divergent waves in the immediate corresponding to x = 1, 0.75, 0.5, 0.25, 0 are depicted in

vicinity of the track of the ship may be profoundly figure 8 for d = 0.1, P -- 126 and y = 450. The

affected by surface tension. notation

8



I3o = tanp, yo = tany (.42ab) where 1:, with n.= 0 and 1. are the integrals defined as

will be used for shortness hereafter. = 2 0expj +t2XI Tiyix)zle dz.

The far-field wave-aml litude function K(t) for he ( =  swith u defined as
foregoing semi-infinite hull has been evaluated for two u= t/(l +t2)l / 2 . (49)

simple approximations defined explicitly in terms of the.- The integrals'l 1 may be evaluated analytically with

hull shape and the Froude number, namely the MicheU. the result

thin-ship approximation and the zeroth-order slender-ship, I± = (I-ee.)/(l+t 2XlIilYoUX),

approximation 171, for which the function K(t) is denoted 12 = [F2(- ee±)/(I +t 2Xl-iyou)-dee±!

K,,(t) and Ko(t), respectively. The Michell thin-ship - /(I + t2 Xi ITiyoUX),

approximation is given by the product of two single where e is the exponential function given by equation (44)

integrals, as follows: and'e., is the exponential function defined as

M = 2v01 exp[-iv 2 (I +t2 )"2 x] dx e. -exp[HiY 2dy0t(l +t 2)11nxj. (50)
We then have

0_d expl (l + t2)z l yoZ) dz. yo1 t l +p 2 )  =
A, -eeB./(l +t2 Xl-iyrUX), (51)

These integrals can be evaluated analytically, with the where the terms A, and B, are given by

result A, = po/(l+t 2Xl iyuX)- 3 (1 +p2+y X)

Kt(t) = 41l 0- 0 - y0d)e - F2 yo( l -e)/(l +t 2 )J A = y/F 2/(I +t 2 Al T iYoux)+

sin[v 2(l + t2)1/2/21 expl-iv2 (I +t 2)1/2/2J/(l +t 2)31 2 , (43) po -vod-yOF 2 /(l +t2X1 TiyuX).

where the term e is defined as It may be verified that we have

e = cxp- v2d(I +t 2 )1. 
(44)

Equations (43) and (44) yield A. = 3oCl -. ,t 2 )/(l +t 2 )+X(52 2ya)(l +p0+y~yJI +p)

IK i(t)I - 4flo lsin( u2t/2) /t
3  as I - 00. (45) + t l (52a)

B ±/(I! + t2X I Tv iyoux ) = ]o/( I + t2) - yoD ±,(52b)

The zeroth-order slender-ship approximation may be where the terms C and D. arc given by

expressed in the form C = 1P3 3/(! +02)(! +p2 +)X 2 (l-x 2 )f(+1 2 +x 2 )

Ko(t) = K" +(t) + K" -(t), (46) _ [oot2X2 +F 2(i +t2 _yo22 x2 )/(i +t2 +ytTx2)
where Kt(t) is given by the sutn of a double integral over .it(t +t 2 )1 / 2 { O-2P 2 yo/(! +t2 +yt 2 x2 )}x]

the hull surface and a single integral along the top /(I +t 2)(I + t2 +yo212x 2 ), (53a)

waterline, as follows: (I +t 2)(l +t2 +y2t 2x2 )D± oYot 2 x2 +d(I +t 2)

= v 4 o' dx _ d, eXp[, 2(l + t2)Z + F2( +t2- yt 2x2)/(l +t2+ yt 2X2)

expi - iv2(I + tZ)t12(x ± yt)j(po + yoz) -it(l + t2)",2ff 0- yod - 2F2 yo/(! + t2 + yo 2x2 )]x. (53b)

Equation (50) yields
v I dx expi - iV2 (l + t2 )112(X ± yexpliv 2(l +t 2 )112(ip~t)Xje:

p31[l + p2 + y2(l - x)21. (47) exp[iv2(l +t 2)1/2(l Tp dt)XI, (55)

- where Odis defined as
The integration in these integrals is carried over the

positive half of the hull surface. Equations (40a) and Pd = fio-dyo = tanfi-dtany, (56)

(42a,b) then yield y = (lo+ yoz)(I- x). We then have as may be obtained from equations (42a,b). By using

x ±yt = I - (I ±/Pot)(I -x)±y 0t(l -x)z. equations (55), (51), (52a,b) and (44) into equation (48) we

By using this relation into equation (47) we may then may obtain

obtain expliV(I + t2 )l/2]K& (t) =

cxpliv2(I + t2)1121K (t) = v2fO epi2(l +t2)1/2(I :;ppot)X] P ow( +t)01(;0 /22I~12+y)I :t/o
tx - ( I + _)exp{ -v 2 d(I +t2)}(1 +t2 )- lI10(t;pd)]/(l +fi2)

l0 0li Y-0 1j I/ 3l/(I + p0+yjx2 ) dx, (48) +yo[J±(t;0o,C )+exp{ -v 2 d(l +t 2 ))Jt(t;pd,D±)1, (57)

where the functions I I(t;) and J ±(t;P,A), or more
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prccisely I! ( 2Z.v) a Z J. (W.A.. ae defi 'M" o I lthe thin::ship Eimit Po - 0, equations (61) and (61ab)
L2 . the intc~rl ye

~~~~~I!,(t-. P) = If0! exK~ +1V41 V- xx a dx ) K( ) , 4 0o + t2)- 3/211 -exp{ - v~d(! +t12)}].

0- Al+11 :p)jxnd. (2) SnA~l + t2)112/21 eXp[ - iV(I + t2)11'2/2] as Po - 0. (62)

, J (t:) =v2J I Vqq +t2)1/l! -p- X]MX) & (5 s) V thinA-sh limit (62) of the zeroth-order slender-ship

m, Te integrals LI(" can be evaWe alayicamly approximation Ko(t) may be seen to be identical to the

with the result Midel thin-ship approximation (43) in the partictilar case

o(t;g) = i(l -E.,.)/o±, (59) =0 0. However, the thin-ship limit (62) of the slender-

l'i(t;p) = -i[(I+2iF 2 /o.)E.+2F(I-E±)IO../o... (Sb) ship approximation (61) is not uniformly valid in the limit

where o. and E. are defined as t - -; indeed, equations (61) and (61a,b) yield equation

= " - -lO E(62) in the limit Pot - 0. Equation (62) yields--) . ) + =(l+t2)t/l-vpt). E. = exp~io.). (59¢.0)

Expressions (59a.b) for l[(t$) and 1+(tp) we not Va!id (tl "' 4PoIsin(t/2)n/t 3 for I «t « l/ o. (63)
in the special case when we have t = I/P. for which More Vperally. equation (61) yields

exprcssions (59ab) become I&(t)l v 4Po 4 R-ill/(I +p1)t3 as t - (64)

l;(,/P.P) = V2  I+(l/I3P) = v2/3 (5*,I Equafions (61a.b) show that IR-ill - I 0tjsin(v2
0 ot2)I/2 if

The integrals J ± defined by equation (58b). Wie Pot > .We then have

the amplitude function A(x) takes the form of C. or D± IKdt)l -* 2Dosin( Pot 2)I/(i +po2)t2 for t >> 1/o. (65)

specified in equations (53a.b). cannot be evaluated In the litt t--, equations (57) and (59a-d) yield

analytically. Thcse integrals were then evaluated exp(iA) (t) " , Io(l -poi 2 )lo (t;p0)

'P pumerically by c"viding the integration range 0 4x, I +y (l +1J + tjot21 (t;fo)]/(l +p)t2 as t - ,

into N segments, of equal length and using pkcewise where we have

quadratic approximations for the amplitude function A(x) (tfl0 ) ill - expiA(l;T13t))l/(l -Iht)t as t -

within each segment. In this manner, we may obtain. . I , -i exp(iv2 t(I T-:Pot)}/(I = P0 t)t as t - co.

N We then have

o.J.(t;..A) j I(l-lilAj- Aj~t) IKo(t)l - 2PoINI/(l +P)Il -po2t2It3 as t - 00, (66)-= _
where the term N is given by

+ (NF 2/o ± XL, - 1XAj + I - Aj) (2NF 2/o) N = (I -/iot 2)[sin( t) + i cos(v2t)J
(I_ {+ Et++if2NF2lo.)(E.-I1))(Aj +Aj.I - 2Aj+ 1/2)), (60) -Vl- 02tz1)[ ot sin(vZ/'ot2) +1 COS(V IPo2)], (66a)

where o is given by c.quation (59c), £. is defined as with o2 defined as

E± = CXp(i 2 o./N). (60a) 0 (0 0). (66b)

and Aj, A , A 1A 2 represent the values of the We may then obtain

amplitude function A(x) at the points x= (j - I)/N, xj+I  IKo(t)I ,-, 4,o0lsin(v2t/2)j/(I + 21)t3 for

= j/N, and x 2 = 1 1/2)/N. respectively. Expression ) < < F/(o
12, (67)

(60) for J ,.(t;P,A) is not valid in the special case when t IKo(t)I 2 2o~lsin(v2fot 2)I/(l + ,o2)t2 for t > lI/O. (67b)
;' I /fti, for which we have

. ,/IN Equations (67a,b) are identical to equations (63) and (65)

6NJ , (I //;P,A) A-, A+ A I+ 4AJ+ . (60) in the limits &o - 0 and y. - 0, respectively. More

'= Igenerally, equation (66a) yields the following upper bound
In summary, the zeroth-order slender-ship for the term IN in equation (66)

approximation Ko(t) is determined by equations (46), (57). 1N12 4( -Po1t2)2 +(I +p2 2)(l -O2P2t 2)2

(59a-f), (60), (60a,b), (42a.b) and (56). In the limiting case +2(1 +pot)2(l +op 0t)I(l -(30t)(I op't). (68)

Yo = 0, these equations yield Equations (67a,b) thus show that in the himit i o

Ko(I) = 4Io(+t 2)-3,2[(li 02)(!+ +,) - we have IKo()t - l/t3 for I << t << F/(P)i 2 that is for

-exp{ -v~d(l + t2)}l(R -iI)/(l -[j3t2 ). (61) moderately large values of t, and k 0(t)' " 11i2 for I,0o
where the terms R and I are given by .<< t, thot is for very large ,Flues of t The asymptotic

SpIV2( -+t 2 Wg 2l 12)1/2 -t . ops tb,(Ab) and (45) show, that the Michell

-PVt irinvpo, + ta) " /21 cif l + 'x' L " l:4 ; t 4 n KM(t) Lorresponds to the thin-ship limit t/
:. I =sui2(tA +t2)t//2l-si *O~)tT/Zt. tb)" - << I of the zeroth-order slender-ship approximation Ko(t),

10
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!Fig. 9a - Real and Imaginary Parts of the Functions Fig. 9b - Real and Imaginary Parts of the Functions

KNt(t) and 1o(t) for a Simple Ship Bow Form with KNI(t) and Ko(t) for a Simple Ship Bow Form with
(3 = 120 (Top) and 30 (Bottom), y = 0 and F = 0.5 (3 = 10 (Top) and 20' (Bottom), y = 0 and F = 0.5

KO1

and that this thin-ship limit is not uniformly valid in the for values of p3 equal to 10 and 20', which are quite

inmit t -- oo. More generally, the limiting processes fiO " 0 small, and for values of t that are much smaller than
and t - cannot be interchanged. ./3 o.

Figures 9a,b depict the real and/or imaginary parts The top and bottom parts of figure 10 depict the
of the functions (1 + t2)''2 KM1(t) and (I + t2)' 2Ko(t) for the real and imaginary parts of the functions (1 + t2)''2KM(t)

~simple boy, shape defined by equations (40a,b), where the and (1 +t2)t'2Ko(t), respectively, for the previously-

nondimensional draft d and the maximum flare angle y, considered simple bow shape with d = 0.1,/(3 = 12°, F

are taken equal to d =0.1 and y, = 0, and four values = 0.5 and for two values of the flare angle, namely for yr

of the half-entrance-angle/(3 are considered, namely (3 = = 0 and 45°. The top part of the figure shows that

120, 30, 1° and 20'. The Froude number based on the differences between the curves corresponding to y = 0

length of the boss region is taken equal to F :-0.5 in the and y 450 are faily small, and are appreciable only for

numeri.al results presented in figures 9a,b and in figures small values of t, for the Michell thin-ship approximation

10 and I I ,.onsidered further on. The values of I//0 KMI. In particular, the asymptotic approximation

I/tan3 corresponding to the values of (3 equal to 120, 30, KMI(t) ,', 4l30 sin(v2t/2) exp( -iv
2t/2)/t 3 as t - co,

I1 and 20 are approximately equal to 4.7, 19, 57 and which may be obtained from equations (43) and (44), is
172, respectively. The functions (I + t2)t '2KM(t) and independent of v. The bottom part of figure 10 showsifferences betw een the approximations KM and K0, and y 450 for the slender-ship approximation K0 that

especialy their imaginary parts, can be seen to be are significantly larger than those for the Michell

s ibstatial in figure 9a L.orrespondmng to/ (N 120 and 3°.  approximation KM, especially for intermediate values oft
Figure 9b shows that differences between the imaginary in the vicinty of t l/tan 3 4.7. The flare angle y
parts of the functions KM and K0 remain appreciable even thus has a pronounced effect upon the behavior of the

II0 (Tp11 0(otmy=0 n . 0(o)ad2' Bto) n .
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' A SIMPLE TEST CASE:SK A +tTHE FAR-FIELD KELVIN WAKE

The expressions for the far-field wave-amplitude

' 1 Itlm pfunction K(t) obtained in the foregoing section for a

-.60 2 4 6 8 10 simple bow shape and for two simple approximations to

t the function K(t), namely the Michell thin-ship

Fig. 10 - Real and Imaginary Parts of the Functions approximation KM and the zeroth-order slender-ship
),= an45 ,/ =12 adF= .5K(t) and Ko(t) for a Simple Ship Bow Form with approximation Ko, may now be used into the previously

determined asymptotic approximations for the far-field

slender-ship approximation Ko0(t) for values of t in the Kelvin wake.

neighborhood of l/tan/l3 The influence of y, upon Il%(t)I Far behind the ship, that is for x "- -0, the

for large values of t is explicitly indicated by the functions +k(x,a), where 0 < k < 4, defined by equations
asymptotic approximations (67a,b). (17). (18), (19) and (20a-e) are given by the asymptotic

Finally, figure 1iI depicts the real and imaginary approximation (23). The real and imaginary parts of the

- parts of the functions (I + t2)' 2KNI(t) and (1 + t2)1 2K0(t) amplitude functions A k(a) and A (o) in this asymptotic

for the simple bow shape depicted in figure 8, for which approximation, given by equation (24a), are depicted in

we have d = 0.1, 13 = 120 and y€ = 450, at a value of figures 12a and b, 13a and b and 14 for 0 < a < 1/23/2.

the Ftoude number F equal to 0.5. Differences between More precisely, figures 12a,b and 13a,b represent the
the approximations KM and Ko may be seen to be quite amplitude functions A and A for k = 0,1,2,3

substantial. In particular, the function (1 + t2)t/2Ko(t) has associated with the potential + and its derivatives +',/ +
- a peak at t = l/tan,0 = l/[J0  and +,x, and correspond to the approximations KM and

0-0

AV' +1r



KO.respectively. Figure 14 depicts the amplitude functions P Ir. y-4. F-.5

A- and A4 corresponding to +xy for the approximations k. .

KM and K0.ta

01 -r .1 , F ks
0.04 k- ,

k.0- 'Nk-1 ftb..

- I -

444t

0-a -------

0.1 2 0o 0.1 02 0. r

.....- Fig. 13a - Real (Top) and Imaginary (Bottom) Parts of
<*> b <4 the Functions K.a /(:%O)t/ 2 for k = 0 (Left) and I

-(Right), K = KO (Zeroth-Order Slender-Ship-0 0.1 0.2 0.3 112a 0 0.1 o 04 oI lv ,Approximation) and a Simple Ship Bow Form with
a-.. .. P = 120, Y = 450 and F = 0.5

Fig. 12a - Real (Top) and Imaginary (Bottom) Parts of
the Functions K~a /(Tg'O)1 / 2 for k = 0 (Left) and I

(Right), K = KM (Michell Thin-Ship Approximation) and o.25 k - - 42' k.-3

a Simple Ship Bow Form with I = 120, y = 450 and
F= 0.5

++

p - 12", -r - 48", F - 0.5 t

+h. ,. I
+ 

+ i

+ +o

+Y> <- -

4 i . I 2 + w ~ p 'p ( +F )p

04 + -0 0.1 0.2 0.31240 0.1 0.2 0.3 112V
+ 0-

Fig. 13b - Real (Top) and Imaginary (Bottom) Parts of
the Functions K±a /(T- e,)1/ 2 for k = 2 (Left) and 3

<.3 <- -> (Right), K = K0 (Zeroth-Order Slender-Ship
0.1 . ..o.2 00.3 Approximation) and a Simple Ship Bow Form with

P 1 120, y = 450 and F = 0.5
Fig. 12b - Real (Top) and Imaginary (Bottom) Parts of
the Functions K a /(e) /2 for k = 2 (Left) and 3

(Right), K = KNI (Michell Thm-Ship Approximation) and and 3 for the slender-ship approximtion K0 and to k = 4
a Simple Ship Bow Form with 1 20, y 450 and for both approximations KM and Ko, respectively This

F = 0.5 singularity at a = 0 illustrates the previously-noted

It may be seen from figures 12a and b, 13a and b conclusion that the asymptotic approximation (23) is not
and 14 that the amplitude functions Ak- (a) and A'(a) uniformly valid in the vicinity of the track of the ship a

become unbounded in the limit a -" 1/23/2. This - 0 if condition (27) is not satisfied. Equations (20a-e)

singularity at a = 1/23/2 stems from the fact that the show that we have ao - 1,a, t, a2  ,t
2 a3 -, t

2 and

asymptotic approximation (23) is not uniformly valid in a4 f, t3 as t -" 0, and equations (45) and (67b) yield

the limit a - 1/23/2, as was already noted. The amplitude IKMI ", 1/t3 and lKol -, l/t 2 as t - -, respectively.

functions A, (a) corresponding to the system of divergent Condition (27) therefore is not satisfied for k > 4 and k

7 waves in the Kelvin wake also become unbounded in the > 2 for the approximations KM and K0, respectively
limit a -- 0 in figures 13b and 14 corresponding to k = 2 Condition (27) however is satisfied for k = 0 and 1,
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corresponding to the potential + and the free-surface 0 P 1r. - -4r. F -J
elevation +, for both the approximations KM and K%. KM K0

Co

Figures 12a and 13a show that the amplitude

functions Ati and A, , corresponding to the transverse
waves in the Kelvin wake, generally are larger in

magnitude than the amplitude functions A and A+"

corresponding to the divergent waves, whereas the reverse + +

may generally be seen to hold in figures 12b and 13b for

the amplitude functions Al and Aj'. The relative

importance of the divergent waves with resp -, to the
transverse waves thus increases with k. Indeed, the

transverse-wave amplitude function A" (a) is hardly visible a , o ____

on the scale of the divergent-wave-amplitude function 2 - 2+ 1 W -P

A4+(a) used in figure 14. Fig. 15 - Amplitude of the Transverse (-) and

Divergent (4) Waves in the Kelvin Wake for a Simple

3. P - . ,,. -o Ship Bow Form, with f3 = 12* , y = 45* and F = 0.5, in
the Michell Thin-Ship Approximation (Left) and the

+ Zeroth-Order Slender-Ship Approximati, , (Right)

0 + indicated in equation (28), for the previously-considered

~ ship bw shape. It may be seen that the amplitude a+(a)

. 0 go of the divergent waves in the Kelvin wake vanishes as a-
J 0, that is at the track of the ship, and is generally smaller

• " <, > >than the amplitude a_ a) of the transverse waves; this is

0. especially true in the vicinity of the track of the ship.-Differences between the wave-amplitude functions a , (a)

L_ 1. 2, , corresponding to the approximations KM(t) a.d K(t) are

-0. 0!1 o02 0.2 12,- 0 0.1 0., 0.3 112 V2 particularly striking for the amplitude a+(a) of the
ag - a

Fig. 14 - Real (Top) and Imaginary (Bottom) Parts of divergent waves in the vicinity of a = tanp/(2+tanI),
the Functions K.a."/( ;E',)1/2 for KM (Left) and KO  where the function a+(a) associated with the

(Right) and a Simple Ship Bow Form with i = 120, approximation V0(t) exhibits a sharp peak.
y = 450 and F = 0.5 Figure 16 depicts the wave-steepness functions s_(a)

The divergent-wave-amplitude functions A (a) and s+(a), which correspond to the ratios of the wave-

associated with the approximation Ko are most notably amplitude functions a_(a) and a+(a) depicted in figure 15
different from the corresponding functions A (a) over the wavelength functions A.(a) and ).+(a) defined by

associated with the Michell approximation KM for values equation (30a); the steepness functions s±(a) are

of a in the vicinity of a = 0, as was already noted, and specifically defined by equations (32) and (33). The

of a = tanjl/(2+tan 2P). In the vicinity of this value of a, divergent waves in the Kelvin wake may be seen to be
the divergent-wave-amplitude functions Ait(a) associated generally steeper than the transverse waves, even though

with the approximation 1o exhibit a peak, which is quite figure 15 shows the transverse waves to be larger in

pronounced for k > 1. The foregoing particular value of amplitude than the divergent waves. This is especially true
a corresponds to the special case when the point of near the track of the ship where the steepness of the
stationary phase t+, defined by equation (12), is equal to divergent waves becomes infinitely large, even though

the value / 0 = l/tani for which the function K0(t) figure 15 shows that their amplitude vanishes as a - 0.
displays a peak, as may be seen from figures 10 and II. The divergent waves become infinitely steep at the track

Figure 15 depicts the amplitude functions of the ship because the wavelength A+ (a) - 0 as a -" 0
(2/n)"/2AF" and (2/n)1/ 2Al that are associated with the and condition (36) is satisfied, for both the

free-surface elevation fai behind the ship, as is specifically approximations KM(t) and Ko(t) as may be seen from

14



0. _,._4 _ IKM(t) and IJK(t) can be "esed in t of a by

INg using equation (12). The corresponding upper bounds for
the steepness function s+(a) are depicted in figure 17.

Comparison of figures 16 and 17 shows that the upper

bound for the steepness of the divergent waves in the
Kelvin wake depicted in figure 17 is satisfactory for all
values of a for the Michell approximation KM, whereas

+ that corresponding to the slender-ship approximation Ko is

satisfactory for values of a smaller than approximately

half the value tan3/(2 + tan2p3). In both cases, the upper
+ + bounds for the func:ion s,+(a) depicted in figure 17 are

satisfactory for the range of small values of a for which

& - a + a -*- the steepness s+ (a) is large. It is noteworthy that these

Fig. 16 - Steepness of the Transverse (-) and Divergent upper bounds for the steepness of the divergent waves are
(+) Waves in the Kelvin Wake for a Simple Ship Bow valid for all Froude numbers, since equations (12), (32)

Form, with P = 12% y = 450 and F = 0.5, in the and (33), and the upper bounds for IKM(t)l and JKo(t)j do
Michell Thin-Ship Approximation (Left) and the Zeroth-

Order Slender-Ship Approximation (Right) not involve the Froude number.

-12'. -W Figure 18 depicts the steepness function s+(a) of

the divergent waves corresponding to the slender-ship
KM K(0 approximation K0(t) for the simple bow shape considered

previously in the two cases when the maximum flare angle

I y is taken equal to 0 and 450 (at the top and bottom

t !halves of the figure, respectively) and for two values of the

Froude number, namely for F = 0.8 and 0.3 (on the right

and left halves of the figure, respectively). Comparison of

the right and left halves of figure 18 shows no appreciable

.I difference between the values of the steepness function

s+(a) for the range of small values of a for which the

a-." U"" - steepness is large, in agreement with the previously-noted
o 0.2 112V1O 0.2 11261 result that the upper bound for s+(a) depicted on the

Fig. 17 - Upper Bound for the Steepness of the right side of figure 17 is independent of the Froude
Divergent Waves in the Kelvin Wake for a Simple Ship ro
Bow Form, with P = 12' and Y = 450, in the Michell 12.
Thii -hip Approximation (Left) and the Zeroth-Order 2

Slender-Ship Approximation (Right)I0F 3 F - o.

equations (45) and (67b). Figure 16 also shows a sharp +

peak in the steepness of the divergent waves at the value

of a equal to tan/i/(2 + tan 23).

The steepness s+ (a) of the divergent waves is given 0
F 0.3 F .1.by equations (32) and (33). An upper bound for the 4 4 o.-"'functions s +(a) may be obtained by using an upper .m+ _ - '

bound for the function IK(t +)I in equation (32). Equation

(45) yields the following upper bound for the function

JKM(t) corresponding to the Michell thin-ship o -L eL r-€- ot

approximation: IKM(t)I < 4/3o/t 3 as t -- o. An upper 0'- a .

bound for the function IKo(t) is given by equation (66), Fig. 18 - Steepness of the Divergent Waves in the Kelvin
Wake for a Simple Ship Bow Form with j = 120, y = 0

where the upper bound defined by equation (68) is used (Top) and 45' (Bottom), and F 0.3 (Left) and 0.8

for the term INI. These upper bounds for the functions (Right) in the Zeroth-Order Slender-Ship Approximation

15



is that the magnitude of the peak increases very rapidly as

i- the Froude number decreases below a certain threshold
f r rvalue in the vicinity of F = 0.3.

A Figure 20 depicts the boundary of the Kelvin wake,
which corresponds to a = - y/x = 1/23/2 (that is, an

12r

anle equal to approximately 19*28'), the line a -

tanp/(2 + tan 2p) c /3/2 (that is, an angle equal to

approximately 60) along which the steepness of the

divergent waves has a peak, and the lines along which the
steepness of the divergent waves is equal to 1/20, 1/15,
and 1/7 (shown as a chain line close to the track of the

ship). The latter three lines were determined by using the

* upper bound for the steepness function s+(a) that was

determined previously and depicted on the right half of

figure 17. The four lines inside the Kelvin wake shown in

figure 20 correspond to the zeroth-order slender-ship

approximation Ko(t) for the simple bow shape considered

previously, with / = 12, y = 450 and d = 0.1. The
3 three lines along which the divergent waves are steep lie

much closer to the track of the ship than the lines a c 60

along which the steepness of the divergent waves exhibits

a peak.

0 0.2 0.4 0.6 0.3 40F --- p. 12,y.46. KO

Fig. 19 - Amplitude of the Peak Value of the Steepness KELVIN
of the Divergent Waves in the Kelvin Wake 'or a Simple t

Ship Bow Form with P = 120 and y = 450 in the _PEAK
Zeroth-Order Slender-Ship Approximation ---

number. Comparison of the top and bottom halves of 0 --
-100 0

figure 18, corresponding to y = 0 and 450 as was already x

noted, shows appreciable differences, especially for F = Fig. 20 - The Kelvin Cusp Line, the Line Along Which
the Amplitude of the Divergent Waves Exhibits a Peak,

0.3 for which the function s%(a) exhibits a very and the Three Lines Along Which the Steepness of the

pronounced peak in the case y = 450 . No such peak is Divergent Waves is Equal to 1/20, 1/15 and 1/7 (Chain

apparent in the top half of the figure for y = 0, that is Line Close to the Track of the Ship) for a Simple Ship
Bow Form, with P3 = 120 and y = 450, in the Zeroth-

in the case when the hull intersects the free surface Order Slender-Ship Approximation

orthogonally.

The right half of figure 16 and the bottom half of The three lines along which the steepness of the

figure 18 show that the magnitude of the peak in the divergent waves is equal to 1/20, 1/15 and 1/7, which are

steepness function s(a) for a = tan,3/(2+tan 2 ) strongly depicted in figure 20 for 0 > x > - 100 and 0 4 y 4 40,

depends on the value of the Froude number. Specifically, are represented again in figure 21 at a distorted scale

the peak is very pronounced in figure 18 for F = 0.3, where 0 > x > -300 and 0 4 y 4 7. The corresponding

fairly pronounced in figure 16 for F - 0.5, and almost constant-steepness lines predicted by the Michell thin-ship

nonapparent in figure 18 for F = 0.8. The magnitude of approximation are also shown in figure 21 for

the peak in the steepness function, that is the value of the comparison. The latter lines were determined from

function s+(a) for a = tanp/(2+tan2p), is represented in equations (32) and (33) and the upper bound IKNI(t) 4

figure 19 as a function of the Froude number, which is 4/po/t 3 given by equation (45). Figure 21 shows significant

based on the length of the bow region. This figure shows differences between the .onstant-steepness lines predicted
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the short divergent waves in the Kelvin wake become
l~r,-y 4" steeper as the entrance angle I increases and as the flare

1120
X0 angle y decreases. More generally, figure 22 shows that the

1U .... short divergent waves in the Kelvin wake are strongly

A influenced by the hull shape, and it therefore suggests the

7 need for performing additional calculations in whioh
systematic variations in hull shzpe are considered.

... "'il ........................." ... SUMMARY OF RESULT'S AND CONCLUSIONS

.. T .......- .. ... ............................... __ Asymptotic expressions for determinir.g the velocity
-300 x 0 potential and its derivatives at a sufficiently-large distance

Fig. 21 - Lines Along Which the Steepness of the behind a ship advancing at constant speed in calm water

Divergent Waves is Equal to 1/20, 1/15 and 1/7 for a
Simple Ship Bow Form, with 1 = 120 and y 450, in are given by equations (23), (23a-e), (24a,b), (25a-d), (20a-
the Michell Thin-Ship Approximation (- - -) and the e) and (26a-d). The far-field asymptotic approximation

Zeroth-Order Slender-Ship Approximation ( ) (23) is uniformly valid in the vicinity of the track of the

ship a = 0 if condition (27) is satisfied. For the simple
IS bow shape considered in this study, condition (27) is

B0 * . satisfied for k = 0 and I, corresponding to the potential

.. .and the free-surface elevation +,x, when the far-field

. ..... wave-amplitude function K(t) is approximated by the

Michell thin-ship approximation KM(t) or the 7Xroth-order
1o - slender-ship approximation Ko(t). However, condition (27)

-ft.~o is not satisfied for k > 4 and k > 2 for the
I ...... +--- ,;. -i - - " --.. approximations KM and K0 , respectively.

. - -The asymptotic approximations used in this study

provide simple explicit analytical expressions for

_ ___ . ,. , , determining the velocity potential and its derivatives for
- -- - large values of - Xg/U 2, that is in the far field, in terms

Fig. 22 - Lines Along Which the Steepness of the
Divergent Waves is Equal to 1/15 for a Simple Ship Bow

Form with P = 8°, 120, 160 and y = 450 (Top) and small and intermediate values of Xg/U 2, these asymptotic
y = 0, 250, 450 and P = 120 (Bottom) in the Zeroth- approximations are not useful, and the integrals (18) must

Order Slender-Ship Approximation be evaluated numerically. For intermediate values of

by the Michell thin-ship approximation KM(t) and the Xg/U 2, the exponential function E+ (tix'+ E_(t.. in the

zeroth-order slender-ship approximation Ko(t). This figure integrands of the integrals (1), (3a,b) and (5a,b) oscillates

strongly suggests the need for performing additional fairly rapidly, as may be seen from figure I. Accurate and
calculations based on a more realistic mathematical model efficient integration rules suited to oscillatory integrands of

than the simple thin-ship and slender-ship approximations the type depicted in figure I must be used. For small

used in this study. values of Xg/U 2, on the other hand, the oscillations of

Finally, the effect of the entrance angle p and of the exponential function E+ (tix")+E_(t7x) are not

the flare angle y on the steepness of the divergent waves is significantly more rapid than the oscillations of the fai-

illustrated in figure 22. Specifically, this figure depicts the field wave-amplitude function K(t) which also appears in

lines along which the steepness of the divergent waves, as the integrands of the wave integrals (18), so that a

predicted by the slender-ship approximation Ko(t), is equal different integration rule is required.

to 1/15 for P = 80, 120, 160 and y = 45', in the top The amplitude, a+, of the divergent waves in the
half of the figure, and for y = 0, 25', 45' and P = 120 Kelvin wake vanishes at the track of the ship if condition

in the bottom half of the figure. This figure shows that (37) is satisfied. However, it is well known that the

17



wavelength, A.+, of the divergent waves also vanishes at value of a equal to approximately half the entrance angle

the track of the ship, as may be seen from figures 6 and p. This finding of Scragg has been verified in this study,

7. Therefore, the divergent waves can theoretically become as may be seen from figures 15, 16 and 18. Furthermore,

infinitely steep at the track of the ship. More precisely, the magnitude of the steepness of the divergent waves has

the steepness, s+ = a,/A+, of th." divergent waves is been found to increase very rapidly as the Froude number

unbounded at the track of the ship if condition (36) is decreases below a certain threshold value, as is shown in

satisfied. Both conditions (37) and (36) can be satisfied figure 19.

simultaneously if condition (39) is satisfied, where the far- The line along which the steepness s+(a) of the

field wave-amplitude function is of order l/t as t - divergent waves has a peak and the lines along which

Conditions (37) and (36), and consequently also condition $+(a) takes the large values 1/7, 1/15 and 1/20 have been

(39), are satisfied in the cases of the thin-ship and the determined, for a simple ship form, on the basis of both

slender-ship approximations KM and 10 for the simple the zeroth-order slender-ship approximation Ko(t) and the

ship form considered in the study, as may be verified Michell thin-ship approximation KM(t). Figure 20,

from figures 15 dnd 16 where a+(a) -" 0 and s+(a) corresponding to the slender-ship approximation Ko(t),

as a - 0. shows that these lines are well inside the Kelvin angle, and

Infinitely-steep water waves cannot exist in reality, that the large-steepness lines are much closer to the track

Indeed, there exists a theoretical upper bound for the of the ship than the line corresponding to the peak in the

steepness of water waves in deep water, which is steepness of the divergent waves.

approximately equal to* 1/7. Condition (39) thus suggests The lines, depicted in figures 20 and 21, along

that no divergent waves can exist within a certain region which the steepness of the divergent waves takes large

in the vicinity of the track of the ship, and that the Kelvin constant values are independent of the value of the

wake contains three distinct regions: (i) an inner region Froude number, but they strongly depend on the hull

adjacent to the track of the ship where only transverse shape, as may be seen from figure 22 where "constant-

waves can exist, (ii) an outer region where both transverse steepness lines" corresponding to several values of the

and divergent waves are jOresent, and (iii) an intermediate entrance apgle and of the flare angle y are depicted.

region at the boundary between the inner and outer This figure shows that the short divergent waves in the

regions where steep short divergent waves, as well as Kelvin wake become steeper as the entrance angle

transverse waves, can be found, increases and/or as the flare angle decreases.

Surface-tension and nonlinear effects have been It was found that the lines, along which the

ignored in the analysis presented in this study. This linear steepness of the divergent waves takes large constant

no-surface-tension analysis predicts extremely short and values, predicted by the slender-ship approximation Ko(t)

steep waves in the vicinity of the track of the ship. Both and the thin-ship approximation KM(t) are quite different

surface-tension and nonlinear effects therefore are liable to from one another, as may be seen from figure 21. This

be significant, and these effects should be taken into figure therefore indicates the need for performing

account. A linear analysis including surface-tension effects additional calculations based on a more realistic

should be performed first, since it is evident from the mathematical model than the simple thin-ship and slender-

results obtained in the present study and from the brief ship approximations used in this study. These two

description of the effects of surface tension upon the approximations correspond to simple special cases of the

Kelvin wake given in Lamb (9, pp. 468-470] and Neumann-Kelvin theory, which should then be used. In

Wehausen and Laitone (10, pp. 636-6371 that the system particular, it would be useful to determine whether this

of divergent waves in the vicinity of the t'ack of the ship more realistic theory predicts that the steepness of the

is likely to be profoundly affected by surface tension, divergent waves in the Kelvin wake exhibits a peak (or

It was previously found by Scragg 151 that, for a several peaks), as was found by using the slender-ship

ship bow form with a large flare angle, the zeroth-order approximation K0(t) for a ship bow form with large flare

slender-ship approximation K0(t) predicts a sharp peak in angle. Figure 21 specifically demonstrates the importance

the value of the amplitude of the divergent waves at a of obtaining accurate predictions of the far-field wave-

18
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amplitude function K(t) for large values of t. Indeed, the REFERENCES
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